
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2023 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Lambda expressions
 Streams

© 2023 Arthur Hoskey. All
rights reserved.

Lambda Expression

 A lambda expression is an anonymous method.

 Here is a lambda expression that adds 10 to a number and
returns the result:

(int a) -> { return a + 10; }

© 2023 Arthur Hoskey. All
rights reserved.

Input

Parameter(s)
Lambda

operator

Expression

The return type is inferred

from the return value (int

in this case)

Lambda Expression

You can do the following with lambda expressions:

 Pass a lambda expression to a method as a
parameter

 Assign a lambda expression to a variable

 Return a lambda expression from a method

© 2023 Arthur Hoskey. All
rights reserved.

Lambda Expression Syntax

 Syntax for lambda expressions:

(int a) -> { return a + 10; }

(a) -> { return a + 10; }

(a) -> a + 10;

a -> a + 10;

() -> System.out.println("No parameters in lambda");

© 2023 Arthur Hoskey. All
rights reserved.

You can omit the parameter data types if you want

You can omit the braces and return if

there is only one statement in the body

You can omit the parameter parenthesis if

there is only one parameter

You can omit variable if there are no parameters

Functional Interface

Functional Inteface

 An interface with only one abstract method.

interface MyFunctionalInterface

{

int square(int x);

}

© 2023 Arthur Hoskey. All
rights reserved.

Contains only

ONE method

Functional Interface and Lambda

 The example below declares an instance of the functional
interface and populates it using a lambda expression.

interface MyFunctionalInterface

{

int square(int x);

}

MyFunctionalInterface mfi;

mfi = (int x) -> { return x * x; };

int result;

result = mfi.square(3);

© 2023 Arthur Hoskey. All
rights reserved.

Declare a variable for

the functional inteface

Assign a lambda expression to

the functional interface variable

Call the method on the

functional interface

Pass Functional Interface to
Method

 The example below passes a functional interface to a method
which then uses it.

void TestMethod(MyFunctionalInterface x)

{

int result;

result = x.square(3);

System.out.println(result);

}

MyFunctionalInterface mfi;

mfi = (int x) -> { return x * x; }

TestMethod(mfi);

© 2023 Arthur Hoskey. All
rights reserved.

Call the method using the parameter

(MyFunctionalInterface is defined on

the previous slide)

Pass in the functional interface variable

as a parameter to TestMethod

Lambdas and Enclosing Scope

Lambdas and Enclosing Scope

 Lambda expressions do not have their own scope.

 Variables defined inside lambdas are part of the enclosing scope.

 Code inside a lambda expression has direct access to all variables in its
enclosing scope.

 The variables used from the enclosing scope should be final or effectively
final (effectively final means the variable is not changed after it is
initialized).

interface MyInterface {

int add(int x);

}

MyInterface mfi;

int num = 5;

mfi = (int x) -> { return x + num; };

int result = mfi.add(3);

System.out.println(result);

© 2023 Arthur Hoskey. All
rights reserved.

The lambda expression has

access to num because num is

declared in the enclosing scope.

The compiler allows access to

num because num is effectively

final (its value does not change

after initialization)

Prints 8

Target Typing

Target Typing

 You do not have to explicitly declare data types in a lambda expression
(compiler figures them out).

 Both parameter and return data types are inferred by the compiler.

 For example:

interface MyFunctionalInterface {

int square(int x);

}

MyFunctionalInterface mfi;

mfi = (x) -> { return x * x; };

int result = mfi.square(3);

© 2023 Arthur Hoskey. All
rights reserved.

Target type of x in lambda is int

because the parameter is an int.

The return type will also be an int.

x is an int

because 3 is

passed in

Target Typing

Target Typing Error

This example has a compile error.

interface MyFunctionalInterface {

int square(int x);

}

MyFunctionalInterface mfi;

mfi = (x) -> { return x * x; };

int result = mfi.square(3.0);

© 2023 Arthur Hoskey. All
rights reserved.

Return type of interface method is int. Any lambda

expression used for this method should resolve to

an int or there will be a compile error.

ERROR. Passing in a double will cause the

parameter type and return type of the lambda

expression to be inferred to a double. This

causes a compile error because a double is

being assigned to result which is an int.

x is a double

because 3.0 is

passed in

Stream

 Now on to streams…

© 2023 Arthur Hoskey. All
rights reserved.

Stream

Stream

 A stream is a sequence of elements that operations can be
performed on.

 IntStream – Predefined class that is a stream of int.

 IntStream.of – Static method that creates an IntSteam instance.

 The following code creates a stream of int from an array of int:

int[] nums = {1, 2, 3, 4, 5};

IntStream myStream;

myStream = IntStream.of(nums);

Note: This stream is different from the file related streams.

© 2023 Arthur Hoskey. All
rights reserved.

Create an array of int

Declare a stream variable

Create a stream instance

that contains the items

from the nums array

Stream vs Collection

Stream vs Collection

 Taken from:

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.
html

 "Collections are primarily concerned with the efficient
management of, and access to, their elements."

 "By contrast, streams do not provide a means to directly access
or manipulate their elements, and are instead concerned with
declaratively describing their source and the computational
operations which will be performed in aggregate on that source."

 A stream pipeline can be viewed as a query on the stream
source.

© 2023 Arthur Hoskey. All
rights reserved.

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

Stream Processing Flow

Stream Processing Flow

1. The data source is to create a stream

2. Any number of intermediate operations are performed on the
stream. Intermediate operations produce another stream.

3. A terminal operation is finally performed on the stream. No more
operations can be performed after a terminal operation.

© 2023 Arthur Hoskey. All
rights reserved.

ResultStreamSource

The terminal operation

causes ALL intermediate and

terminal operations to be

executed

Stream

Intermediate

operations

(as many has

you want)

Terminal

Operation

Intermediate Operations

 Intermediate Operations – Operations performed on each
element of the stream.

 Examples:
◦ Square every number in a stream.

◦ Apply a method to every number in a stream.

 Each intermediate operation returns a new stream object (allows
for creating a pipeline of calls to operate on the stream).

 Intermediate operators are "lazy" (they do not actually initiate
processing).

 You must call a terminal operation to execute all intermediate
operations (see upcoming slide for terminal operation).

© 2023 Arthur Hoskey. All
rights reserved.

Reduction and Terminal
Operations

 Reduction - Operations that take the elements of a stream and
produce one result. For example: sum, average, min, max, etc…
The stream is being "reduced" to one value.

 Terminal Operations – Actually initiate processing. All
processing on a stream is delayed until a terminal operation is
called. Uses "eager" evaluation (do immediately).

 Once a terminal operation is applied to a stream you basically
cannot use that stream again.

 All reductions are terminal operations.

 However, not all terminal operations are reductions. For example,
forEach is a terminal operation that does not produce one value.

© 2023 Arthur Hoskey. All
rights reserved.

Stream Example

Stream Example

int[] nums = {1, 2, 3, 4, 5};

IntStream myStream = IntStream.of(nums);

myStream.filter(x -> x > 3).forEach(System.out::println);

© 2023 Arthur Hoskey. All
rights reserved.

Source

1,2,3,4,5

Stream Operations

(intermediate and terminal operations)

Stream

1,2,3,4,5

Intermediate

Operation Stream

4,5

Terminal

Operation Result

filter(x -> x > 3) forEach(System

.out::println);

filter only lets elements

that meet a condition

go through (greater

than 3 in this case)

forEach applies the given

method to all stream

items (prints items on the

screen in this case)

IntStream.of

creates a

stream from

an array

Stream and Other Stream
Interfaces

Stream Interface

 Stream<T> – A sequence of T type values. T can be any
reference type.

Other Stream Interfaces

 IntStream – A sequence of primitive int values.

 DoubleStream – A sequence of primitive double values.

 LongStream – A sequence of primitive long values.

© 2023 Arthur Hoskey. All
rights reserved.

Collection's stream Method

Collection class stream Method (Creating a stream)

 You can use the stream() method of the Collection interface to
create a stream.

 The stream() method returns a Stream<T> instance.

Integer[] nums = {1, 2, 3, 4, 5};

Collection<Integer> coll = Arrays.asList(nums);

coll.stream().forEach(System.out::println);

© 2023 Arthur Hoskey. All
rights reserved.

Creates a Stream<T> from the list

(T stands for Integer in this case)

This example does not contain any intermediate

operations but you can add as many as you want

here. Intermediate operation calls would be placed

after stream() but before the terminal forEach.

Reference to Primitive Conversion

Reference to Primitive Conversion

 Stream<T> contains only reference types.

 There are times when you need to operate on primitive types.

 Use mapToInt or mapToDouble to convert Integer and Double
wrapper types to their equivalent primitive types.

 Certain methods require a sequence of primitive values (for
example average()).

Integer[] nums = {1, 2, 3, 4, 5};

Collection<Integer> coll = Arrays.asList(nums);

coll.stream().mapToInt(x -> x).forEach(System.out::println);

© 2023 Arthur Hoskey. All
rights reserved.

mapToInt generates an

IntStream instance

(sequence of int)

Stream() returns a

sequence of Integer

type elements (not int)

Lambda expression

x->x is applied to each

element

Stream Reference to Primitive
Conversion

Stream – Reference to Primitive Conversion

Integer[] nums = {1, 2, 3};

Collection<Integer> coll = Arrays.asList(nums);

coll.stream().mapToInt(x -> x).forEach(System.out::println);

© 2023 Arthur Hoskey. All
rights reserved.

Source
(array)

1 (Integer)
2 (Integer)
3 (Integer)

Stream Operations

(intermediate and terminal operations)

Intermediate

Operation

Terminal

Operation

Result

mapToInt

(x ->x)

forEach(System

.out::println);

mapToInt converts

each item from an

Integer to an int

Call Arrays.asList to

creaate a collection

from an array.

Source
(collection)
1 (Integer)
2 (Integer)
3 (Integer)

Stream

1 (Integer)
2 (Integer)
3 (Integer)

Stream

1 (int)
2 (int)
3 (int)

stream() creates a

stream from a

collection

Reference to Primitive Conversion

Reference to Primitive Conversion – Another Example

int[] data = {33, 45};

int sum = Arrays.stream(data)

.sum();

System.out.println(sum);

int sum2 = Arrays.asList(33, 45)

.stream()

.mapToInt(i -> i)

.sum();

System.out.println(sum2);

© 2023 Arthur Hoskey. All
rights reserved.

Creates a stream of Integer objects

since nums are in a List. A List can only

store Object types so the int values 33

and 45 must be boxed into Integer

objects. The boxing forces us to unbox

when doing calculations. This is why

mapToInt must be called. mapToInt

unboxes the Integer objects.

Stream is created from an array which

contains primitive types (no need to

convert to a primitive type for sum).

Sum requires primitive types

mapToInt unboxes Integer objects so

sum can have primitives to operate on

range and rangeClosed

range and rangeClosed

 IntStream and LongStream classes have helper methods to easily
create collections of numbers (range and rangeClosed).

 range – Create a stream in the given range. It does NOT include
the ending value.

IntStream.range(1, 5)

.forEach(System.out::println);

 rangeClosed – Create a stream in the given range. It does
include the ending value.

IntStream.rangeClosed(1, 5)

.forEach(System.out::println);

© 2023 Arthur Hoskey. All
rights reserved.

Creates a stream with the

elements 1, 2, 3, 4

Creates a stream with the

elements 1, 2, 3, 4, 5

Stream - forEach

forEach

 forEach is a terminal operation that performs an action on all elements of
a stream.

 For example, printing - If you want to print all elements of a stream you
can apply a print method to each element of a stream.

int[] nums = {1, 2, 3, 4, 5};

IntStream myStream = IntStream.of(nums);

myStream.forEach(System.out::println);

Note: The compiler will convert System.out::println to

x->System.out.println(x). For example:

myStream.forEach(x->System.out.println(x)); // Same as forEach above

© 2023 Arthur Hoskey. All
rights reserved.

Pass in a reference to

the println method

:: is used for a method

reference in Java

forEach applies the

passed in method to each

item in the stream

filter

filter

 An intermediate operation that generates another stream based
on a test (based on a predicate).

 The test is applied to all elements in stream.

int[] nums = {1, 2, 3, 4, 5};

IntStream myStream;

myStream = IntStream.of(nums);

myStream.filter(x -> x > 3).forEach(System.out::println);

 All intermediate and terminal operations must be performed in
one chain together (stream pipeline). For example, the following
will not work:

myStream.filter(x -> x > 3);

myStream.forEach(System.out::println);

© 2023 Arthur Hoskey. All
rights reserved.

Prints the following

4

5

Only use numbers

greater than 3

Cannot do operations on the

same stream in different

statements (they must be

"chained" together in the same

statement)

map

map

 Returns a stream that is the result of applying a given function.

 The map method can be applied as many times as you want as
long as those calls are before a terminal operation.

int[] nums = {1, 2, 3, 4, 5};

IntStream myStream;

myStream = IntStream.of(nums);

myStream.map(x -> x * x)

.forEach(System.out::println);

© 2023 Arthur Hoskey. All
rights reserved.

Squares each number in the

stream. The lambda is being

applied to all stream elements.

Print out all the elements

map

Stream – map

int[] nums = {1, 2, 3, 4, 5};

IntStream myStream;

myStream = IntStream.of(nums);

myStream.map(x -> x * x).forEach(System.out::println);

© 2023 Arthur Hoskey. All
rights reserved.

Source
(array)
1 (int)
2 (int)
3 (int)
4 (int)
5 (int)

Stream Operations

(intermediate and terminal operations)

Intermediate

Operation

Terminal

Operation

Result

map(x -> x * x) forEach(System

.out::println);

Map squares

each item in

this example

IntStream.of creates a

stream from an array

Stream

1 (int)
2 (int)
3 (int)
4 (int)
5 (int)

Stream

1 (int)
4 (int)
9 (int)
16 (int)
25 (int)

map – Change Type

map (change type String to Integer)

 You can use the map operation to change the stream elements to
a different data type.

List<String> numbers = List.of("1", "2", "3");

numbers.stream()

.map(Integer::valueOf)

.forEach(System.out::println);

numbers.stream()

.map(x->Integer.valueOf(x))

.forEach(System.out::println);

© 2023 Arthur Hoskey. All
rights reserved.

Create a list of String

Converts each

element to an Integer

Integer::valueOf is

the same as:

 x->Integer.valueOf(x)

map - Change Type

map - Change Type

List<String> numbers = List.of("1", "2", "3");

numbers.stream()

.map(x->Integer.valueOf(x))

.forEach(System.out::println);

© 2023 Arthur Hoskey. All
rights reserved.

Stream Operations

(intermediate and terminal operations)

Intermediate

Operation

Terminal

Operation

Result

map(x->Integer.valueOf(x)) forEach(System

.out::println);

map calls Integer.valueOf

which converts the

String to an Integer

Source
(List)

"1" (String)
"2" (String)
"3" (String)

Stream

"1" (String)
"2" (String)
"3" (String)

Stream

1 (Integer)
2 (Integer)
3 (Integer)

stream() creates a

stream from a

collection

map – Change Type

map (change type Employee to String)

 The following example creates a stream from a List of Employee
objects and then converts them to String objects.

class Employee {

public Employee(String name, int id) { this.name = name; this.id = id; }

private String name;

private int id;

public String getName() { return name; }

public void setName(String name) { this.name = name; }

public int getId() { return id; }

public void setId(int id) { this.id = id; }

}

List<Employee> empList = List.of (

new Employee("Rose", 100),

new Employee("Mateo", 101));

empList.stream()

.map(e -> e.getName())

.forEach(System.out::println);

© 2023 Arthur Hoskey. All
rights reserved.

Create a list of Employee

Converts each

element to a String

map - Change Type

map - Change Type (Employee to String)

List<Employee> empList = List.of (

new Employee("Rose", 100),

new Employee("Mateo", 101));

empList.stream()

.map(e -> e.getName())

.forEach(System.out::println);

© 2023 Arthur Hoskey. All
rights reserved.

Stream Operations

(intermediate and terminal operations)

Intermediate

Operation

Terminal

Operation

Result

map(e -> e.getName()) forEach(System

.out::println);

map converts Employee

to String

Source
(List)

"Rose",100
(Employee)

"Mateo", 101
(Employee)

Stream

"Rose",100
(Employee)

"Mateo", 101
(Employee)

Stream

"Rose"
(String)
"Mateo"
(String)

stream() creates a

stream from a

collection

sorted

sorted

 Sorts the elements in the stream.

int[] nums = {3, 1, 4, 5, 2};

IntStream myStream;

myStream = IntStream.of(nums);

myStream.sorted()

.forEach(System.out::println);

OR

myStream.boxed()

.sorted(Collections.reverseOrder())

.forEach(System.out::println);

© 2023 Arthur Hoskey. All
rights reserved.

Unsorted array of numbers

Sorts the numbers in ASCENDING order

The numbers will be printed

in sorted order (1, 2, 3, 4, 5)

Sorts the numbers in DESCENDING order

(they must be boxed to do this)

The numbers will be printed

in sorted order (5, 4, 3, 2, 1)

average

average

 Use average() to find the average of a sequence of primitive
double elements.

 average() returns an instance of OptionalDouble.

 OptionalDouble has a method getAsDouble which returns a
primitive double.

List<Double> numbers = List.of(1.0, 2.0, 3.0, 4.0, 5.0);

double avg = numbers.stream()

.mapToDouble(x -> x)

.average()

.getAsDouble();

© 2023 Arthur Hoskey. All
rights reserved.

Convert Double to

primitive

Calculate

the average

Convert result to a

primitive double type

collect

collect

 You can convert a stream back to a collection.

List<Integer> list;

list = IntStream.range(1,5).boxed().collect(Collectors.toList());

list.forEach(System.out::println);

© 2023 Arthur Hoskey. All
rights reserved.

Creates a stream with the

elements 1, 2, 3, 4

Print all elements in the list

collection instance (list is NOT

a stream, it is a List<Integer>)

boxed creates Integer class

elements from the int primitive

elements in the IntSteam

Collect Creates a

List<Integer> instance

Changing Type and Saving to List

Use map to change type and then save to a list
class Employee {

public Employee(String name, int id) { this.name = name; this.id = id; }

private String name;

private int id;

public String getName() { return name; }

public void setName(String name) { this.name = name; }

public int getId() { return id; }

public void setId(int id) { this.id = id; }

}

List<Employee> empList = List.of (

new Employee("Rose", 100),

new Employee("Mateo", 101));

List<String> nameList =

empList.stream().map(e ->e.getName()).collect(Collectors.toList());

for (String n: nameList) {

System.out.println(n);

}

© 2023 Arthur Hoskey. All
rights reserved.

Create a list of Employee using List.of

map takes the Employee instances and

pulls out the names. Only string instances

are in the stream after map runs.

collect converts the strings in

the stream to a List<String>

End of Slides

 End of Slides

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: Lambda Expression
	Slide 4: Lambda Expression
	Slide 5: Lambda Expression Syntax
	Slide 6: Functional Interface
	Slide 7: Functional Interface and Lambda
	Slide 8: Pass Functional Interface to Method
	Slide 9: Lambdas and Enclosing Scope
	Slide 10: Target Typing
	Slide 11: Target Typing
	Slide 12: Stream
	Slide 13: Stream
	Slide 14: Stream vs Collection
	Slide 15: Stream Processing Flow
	Slide 16: Intermediate Operations
	Slide 17: Reduction and Terminal Operations
	Slide 18: Stream Example
	Slide 19: Stream and Other Stream Interfaces
	Slide 20: Collection's stream Method
	Slide 21: Reference to Primitive Conversion
	Slide 22: Stream Reference to Primitive Conversion
	Slide 23: Reference to Primitive Conversion
	Slide 24: range and rangeClosed
	Slide 25: Stream - forEach
	Slide 26: filter
	Slide 27: map
	Slide 28: map
	Slide 29: map – Change Type
	Slide 30: map - Change Type
	Slide 31: map – Change Type
	Slide 32: map - Change Type
	Slide 33: sorted
	Slide 34: average
	Slide 35: collect
	Slide 36: Changing Type and Saving to List
	Slide 37: End of Slides

